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Summary:  
This report presents a workflow for probabilistic fault stability assessment in CO2 storage, 
emphasising uncertainty quantification, parameter ranking, and Bayesian updating for critical 
inputs. Using North Sea's Horda platform cases, including the Vette fault zone in Smeaheia, 
this study demonstrates the value of the suggested methods. This study highlights the usefulness 
of the probability of failure (Pf) as a reliable measure for stability assessment, particularly when 
traditional methods present conflicting results. It also highlights the effectiveness of the Sobol 
sensitivity analysis for input ranking and understanding parameter interactions, which is crucial 
for resource prioritisation and monitoring strategy in early field development. Furthermore, the 
report illustrates how the Bayesian approach can enhance the accuracy of stress prediction by 
leveraging data from geologically similar sites and acknowledging site-specific heterogeneity, 
significantly aiding in geomechanical risk assessments. 
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1 Introduction 

This report summarises a workflow for probabilistic fault stability assessment in CO2 storage, 
emphasising uncertainty quantification, parameter ranking, and Bayesian updating for critical 
inputs, developed through SHARP WP5 (EC Project no. 691712).  

1.1 Background 
The heterogeneous nature of geological processes and the limited availability of measurable 
surface information trigger some degree of uncertainties in CO2 storage evaluation. Ongoing 
studies in SHARP also clearly indicate significant variations in in-situ stress conditions f 
(Grande et al., 2022) and mechanical behaviours (Grande et al., 2023) from the SHARP work 
on stress drivers and outliers. This observation raises a necessity for robust uncertainty 
quantification methods for the storage assessment, particularly in an early stage of field 
screening. As an initial effort to develop a workflow for quantitative risk assessment, SHARP 
report D5.1 (Bozorgzadeh, 2022) briefly introduces a method to quantify uncertainties involved 
in spatially averaged inputs required for geomechanics modelling. Following the previous 
initiative, this report summarises a probabilistic framework using a reliability-based approach 
to quantify the impact of the uncertainties involved in stress modelling and mechanical 
properties on the integrity of the CO2 sequestration site. 
The developed workflow is anticipated to support other WPs in SHARP and in CCS projects to 
come. The outcomes of an initial analysis can be used to re-evaluate the key stress modelling 
inputs/uncertainties and their influence on subsequent predictions for WP1. Understanding the 
rank of the relative importance of inputs could also be used for planning for lab and field tests, 
which have been focused on WPs 2 and 3, respectively, and monitoring strategy for WP4. Then, 
the site-specific evaluation, including the probability of stability, could also be valuable input 
for upcoming deliverables on quantitative modelling of CO2 storage containment risks by 
WP5.3 and scientific guidance for quantifying risk by WP5.4.  

1.2 Structure of the report 
This report provides a comprehensive workflow, including probabilistic stability assessment 
and advanced sensitivity analysis to identify critical inputs, as well as novel techniques to 
reduce the uncertainty of critical input parameters.  
Section 2 introduces a theory and method that is used for the workflow for probabilistic fault 
stability assessment together with a demonstration case for the Vette fault in the Smeaheia area. 
The section includes methods that can assess the stability of faults in a probabilistic manner and 
the variance-based sensitivity method, which can quantify the contribution of input 
uncertainties to the uncertainty in a probabilistic fault stability assessment. Then, the suggested 
method is demonstrated using a case study for the Smeaheia area. 
Section 3 introduces a method that can reduce uncertainties of the identified critical parameters 
using the Bayesian hierarchical modelling (BHM) approach. This section will start with a brief 
explanation of how BHM enables logical borrowing of nearby historical stress data by 
accounting for between-site heterogeneity/similarity compared to the customary complete 
pooling approach. Then, the novelty of the method will be showcased through a case study for 
the Aurora and Smeaheia CO2 storage sites. 
Then, Sections 4 and 5 will summarize the findings and limitations of the suggested workflow 
and address a further study at the end. 
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2 Probabilistic fault stability assessment 

Fault stability is critical for the early screening process for CO2 storage sites. A quick and 
accurate way to assess it becomes more important. One of the challenges in screening unstable 
fault zones is how to handle uncertainties in input parameters and their impact on assessment 
results. Particularly, there is a lack of understanding of the relative importance of uncertainties 
in these parameters. This section introduces a theory and method that can be used for the 
workflow for probabilistic fault stability assessment, which is developed through SHARP WP5. 
 

2.1 Fault stability assessment methods 
Fault reactivation can occur when the stress acting on the fault exceeds its strength. Thus, fault 
reactivation analysis is a quantitative process comparing the fault stress to its strength. The 
stress acting on faults can be determined by decomposing surrounding principal stress 
conditions as illustrated in Figure 2-1a, and then the estimated normal and shear stresses acting 
on the faults can be compared to its failure criteria visually at the Mohr-Coulomb diagram as 
illustrated in Figure 2-1b. Stresses around the faults are affected by operations in reservoirs, 
like the production of oil and gas (pressure reduction) or CO2 injection (pressure increase). 
Particularly, during the CO2 injection, the increased pore pressure tends to move the Mohr 
circles toward the failure envelopes and can make the stresses around faults more critical with 
respect to failure criteria. Thus, the importance of robust assessment of fault reactivation 
analysis becomes more important for the CO2 injection site than the conventional depletion 
cases. 
 

 
Figure 2-1 (a) Schematic presentation of stresses on a fault plane and (b) illustration of the change 

in effective stresses due to injection on Mohr diagram.  

 
Stability assessment criteria provide quantitative thresholds or measures that we can use to 
predict the potential for fault reactivation under induced or natural changes in stress and pore 
pressure. This section introduces some criteria utilized in seismology and geomechanics for 
CO2 or geothermal reservoirs. 
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The allowable injection pressure 𝑃𝑃𝑐𝑐 , which is also known as critical pressure perturbation 
(Wiprut and Zoback, 2000), represents the change in pore pressure ΔP that triggers a shear 
failure. The 𝑃𝑃𝑐𝑐 can be defined as a horizontal distance between the stress acting on the faults 
and the failure envelope, as illustrated in Figure 2-2. Since it underestimates the allowable 
injection pressure due to its simplified stress path during the injection, which is a horizontal 
distance, it is often used as a conservative evaluation under a normal stress faulting regime. The 
𝑃𝑃𝑐𝑐 equation is expressed as follows: 
 

Pc = 𝜎𝜎𝑛𝑛,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
′ −

𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝐶𝐶0
𝜇𝜇′

(2.1) 

 

Where 𝜎𝜎𝑛𝑛,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
′  and 𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  are the effective normal and shear stresses acting on fault, 

respectively, 𝐶𝐶0  is the cohesion, and 𝜇𝜇′  is the effective friction coefficient. The effective 
friction coefficient  𝜇𝜇′ can also be esitmated using a tangent of effective friction angle φ’ (i.e., 
𝜇𝜇′ = tan  φ’). 

The mobilized shear strength 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 is defined as the ratio of the mobilized shear stress to its 
maximum resistance or strength, particularly to its friction coefficient (Choi, et al., 2023; 
Hettema, 2022). When the fault is stressed by its surroundings, the shear stress acting on the 
faults can increase only until its maximum possible resistance, which is shear strength. As the 
shear stress increases, the mobilized shear strength can thus reach to maximum 1.0. In 
geotechnical and structural engineering, the mobilized shear strength is widely used as a 
measure for stability evaluation that can show the relative distance between the stress and the 
strength (Ching and Phoon, 2013; Mesri and Shahien, 2003; Wong et al., 2007). Also, this term 
is an inverse of safety factor against a shear failure. The mobilized shear strength 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚′  can be 
defined as: 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚′

𝜇𝜇′
=

�
𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝐶𝐶0
𝜇𝜇′ + 𝜎𝜎𝑛𝑛,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

′
�

𝜇𝜇′
(2.2)

 

 

For the cohesionless case, where C0 = 0, the mobilized friction coefficient becomes the same 
as the slip tendency (ratio of shear stress to normal stress). 
The allowable injection pressure is related to a future risk because it predicts the pore pressure 
increases needed for shear failure. In contrast, the mobilised shear strength evaluates the current 
stability status by comparing the current stress state to the material strengths. Thus, Pc can be 
used as a criterion for future conditions, while the mobilised shear strength can be used to 
evaluate the current status. However, in this study, we have also used the allowable injection 
pressure as a criterion for assessing the current status’s probability. For that purpose, we have 
only used binary stability, which is fail or stable, as a criterion when the probability is 
calculated. 
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Figure 2-2  Conceptual meaning of mobilized shear strength (𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 ) and allowable injection 

pressure (𝑃𝑃𝑐𝑐) illustrated in the 3-D Mohr circle diagram. The symbols in the figure are 
defined in the text (Choi et al., 2023) 

 

2.2 Probabilistic assessment methods 
2.2.1 Workflow 

Probabilistic fault stability assessment calculates the likelihood of fault reactivation or failure 
under uncertain geological and operation conditions. As illustrated in Figure 2-3, the assessment 
begins with defining a model for stability assessment. The model can be either a simple 
analytical solution, which is briefly covered in a previous section 2.1, or a complex numerical 
model. Selection of the model should be based on the availability of data during various stages 
of field development, the governing mechanisms of interest, and the overall risk level of 
interest. Then, essential inputs, including geomechanical parameters and operational 
conditions, need to be identified. SHARP report D5.1 (Bozorgzadeh, et al., 2022) briefly 
addresses methods to quantify the input uncertainties. In addition, Section 3 will introduce how 
the Bayesian approach can enhance the accuracy of input prediction. 
Computational costs are one of the challenges in probabilistic assessment. Unlike deterministic 
analysis, which may require only a single calculation or a few, probabilistic analyses require 
extensive computations to cover a wide range of scenarios. Thus, the workflow involves a 
decision of model approximation. If the scale of the model exceeds a computational demand, 
some level of model approximation is essential to reduce the computational costs.  
Subsequently or parallelly, a sensitivity analysis can be conducted to pinpoint the most 
influential parameters affecting fault stability. This analysis is crucial for understanding which 
factors to monitor and manage more closely to reduce uncertainties in model outputs or to 
approximate the model robustly (Razavi et al., 2021). Section 2.2.3 will briefly introduce a 
method that can quantify the contribution of input variance to the output variances. 
Then, the probability of failure can be calculated through various reliability methods. This 
report briefly introduces a Monte Carlo Simulation and First Order Reliability method in 
Section 2.2.2. 



SHARP Storage – Project no 327342   

   
 

 
Figure 2-3  Workflow for probabilistic fault stability assessment 

 

2.2.2 Reliability methods 

2.2.2.1 Monte Carlo Simulation 
Monte Carlo simulation (MCS) is a computational method that can simulate the response of 
randomly generated inputs. Particularly, this method is useful when assessing a problem with 
significant uncertainties in model inputs (e.g., material properties in subsurface materials). 
MCS randomly generates N inputs following its probabilistic distribution and performs a 
deterministic calculation using a model 𝑓𝑓(𝑋𝑋) for each set of random inputs where 𝑋𝑋 =
[𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛]. Then, the distribution of outputs can be calculated by aggregating the results 
of the deterministic calculation of each random set. For a stability assessment, MCS can 
calculate the probability of failure by counting the cases showing failure as expressed as: 
 

1
𝑁𝑁
� [𝑓𝑓(𝑋𝑋𝑚𝑚) = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹]
𝑁𝑁

𝑚𝑚=1

 

 
Where m denotes the mth sample, and [] is the Iverson bracket notation that can convert 
statements into 1 for True and 0 for False. For a fault stability assessment, the failure is 
determined by a criterion such as the mobilised shear strength exceeding a unity (i.e., 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 >
1) or the allowable injection pressure smaller than a zero (i.e., Pc < 0). 

Although MCS is a relatively straightforward and simple method, the computational cost can 
be high, particularly for cases with a large-scale deterministic model or low probable response. 
However, the computational cost can be optimised by adopting advanced techniques such as 
Latin hypercube sampling (McKay et al., 1979) or Importance sampling (Kloek and van Dijk, 
1978). Also, the deterministic model can be approximated using a response surface method or 
other surrogate models (Sudret et al., 2017). 
 
2.2.2.2 First-order reliability methods with Response surface methods 
The First Order Reliability Method (FORM) (Hasofer et al., 1973) overcomes some limitations 
of Monte Carlo Simulation (MCS) primarily in terms of computational efficiency. MCS 
requires a large number of simulations to accurately estimate failure probabilities, especially 
for low-probability events, which can be computationally intensive. FORM, by transforming 
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the problem into a standard normal space and linearising the limit state function, simplifies the 
computation. This approach reduces the number of required simulations while still providing a 
reliable estimate of failure probability and sensitivity factors, making it more practical for 
complex engineering problems with multiple variables. 
The starting point for FORM is the definition of the limit function G(X), where X is the vector 
of basic random variables. The limit function must be defined such that G(X) > 0 means 
satisfactory limit and G(X) ≤ 0 means failure. If the joint probability density function of all 
random variables Fx(X) is known, then the probability of failure Pf is given by 

 
where L is the domain of X where G(X) ≤ 0. In general, the above integral cannot be solved 
analytically. In the FORM approximation, the vector of random variables X is transformed to 
the standard normal space U, where U is a vector of independent Gaussian variables with zero 
mean and unit standard deviation, and where G(U) is a linear function. The probability of failure 
Pf is then (where P[...] means "the probability that…"): 

 
where αi is the direction cosine of random variable Ui, β is the distance between the origin and 
the hyperplane G(U) = 0, n is the number of basic random variables X, and Φ is the standard 
normal distribution function. The vector of the direction cosines of the random variables (αi) is 
called the vector of sensitivity factors, and the distance β from the origin to the "design point" 
is the reliability index. 
The failure modes used as limit state functions for the fault stability analyses could be the 
mobilized shear strength larger than unity. Although the critical injection pressure is used to 
predict a future change of the pore pressure increases needed for shear failure, the binary output 
indicating the fail or stable can also be used as an indicator showing the current stability 
condition. Thus, the condition satisfying the critical injection pressure less than 0 is also used 
as a limit state function for the fault stability analysis.  
If the scale of the model for the limit state function exceeds a computational demand, some 
level of model approximation, such as a response surface method (Box and Draper, 1987), is 
required to reduce the computational costs. As illustrated in Figure 2-4, the following steps are 
included in the probabilistic analysis: 

‒ Quantify the uncertainty in input parameters and, if relevant, in the analysis method. 
‒ Express the limit state function (in this case with the RSM approximation). 
‒ Do the FORM analysis (comparable to millions of Monte Carlo simulations). 

‒ Calculate the failure probability (Pf), reliability index (β) and sensitivity of Pf to each 
uncertain parameters. 

‒ Check the coordinates of the "design point", which is the point on the limit state surface 
in the standard normal space that is closest to the origin, to ensure that the coordinates 
are consistent with the modelled situation. 



SHARP Storage – Project no 327342   

   
 

 
The components of the normalized gradient vector at the design point can also be used as a 
sensitivity factor, which is known as the ‘alpha factor. The magnitude of these factors indicates 
the relative importance of each variable in terms of its contribution to the failure probability. 
 

 
Figure 2-4  Workflow for FORM with response surface method 

 

An illustration of the "design point” and a graphical representation of the reliability index β are 
given in Figure 2-5. The FORM approximation involves (1) transforming a general random 
vector into a standard Gaussian vector, (2) locating the point of maximum probability density 
(most likely failure point, "design point", or simply the β-point) within the failure domain, and 
(3) estimating the probability of failure as P ≈ Φ(-β), in which Φ(⋅) is the standard Gaussian 
cumulative distribution function. The square of the direction cosines or sensitivity factors (αi

2), 
which sum is equal to unity, quantifies in a relative manner the contribution of the uncertainty 
in each random variable Xi to the total uncertainty. Applications of the FORM approach to 
offshore geotechnical problems are given (Lacasse and Nadim, 2007).  

  
Figure 2-5 Illustration of First-Order Reliability Method (FORM) to calculate failure probability. 
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For a given probability distribution (e.g., normal, lognormal, triangular, exponential), there is a 
unique relationship between reliability index and failure probability. Figure D4 gives the 
relationship for a normally distributed function. For example, a reliability index (β-value) of 
3.7 corresponds to a failure probability (Pf) of 10-4 and a β-value of 4.3 to a Pf  of 10-5.  
 

 
Figure 2-6 Relationship between probability of failure, Pf, and reliability index β (normal 

distribution). 

 

2.2.3 Sensitivity analysis 

Assessing fault stability is controlled by various factors, including the geometry of faults, initial 
stress conditions, mechanical properties of faults, operating conditions, etc. Thus, in order to 
stochastically assess the stability of faults, it is vital to have detailed information about the 
inputs required for the assessment. However, it is not easy or sometimes impossible to estimate 
the inputs required for the assessment accurately. Particularly, in an early stage of field 
development, due to limited information about the field condition, it is more challenging to 
estimate an accurate range of input parameters.  
Sensitivity analysis can be a helpful tool that can assist in identifying the influence of input 
parameters and understanding the model when there is limited information on the various input 
parameters, such as in an early phase of field development. Particularly for a problem that needs 
to consider uncertainty in inputs using a stochastic or probabilistic analysis, it is very important 
to identify the contribution of input uncertainties to output uncertainties. Understanding the 
contribution of input uncertainties can reduce an unnecessary cost and effort to tune the less 
important parameters and consequently can optimize the financial cost for field development. 
Variance-based sensitivity analysis, also often referred to as the Sobol method (Sobol′, 2001), 
is an efficient tool that can quantify the contribution of inputs to a variance in output (e.g., 
distribution of mobilized shear strength or allowable injection pressure). Since the variance-
based sensitivity evaluates a sensitivity by varying entire parameters simultaneously, it is also 
known as global sensitivity analysis, in contrast to a local sensitivity method which changes 
parameters ‘one at a time’(Saltelli and Annoni, 2010).  The Sobol method can evaluate the 
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sensitivity caused either by a single parameter or by the interaction of several parameters. Thus, 
it can effectively identify the relative importance of inputs even for the cases where inputs are 
widely spread and outputs are determined by interaction with other inputs. This section will 
briefly introduce the concept of variance-based sensitivity analysis. Then, the results of Sobol 
sensitivity analysis for the Smeaheia fault stability assessment will be presented in section 2.4.   
In the Sobol sensitivity analysis, the total variance V of the model output Y is decomposed into 
components attributed to each input variable (Sobol′, 2001). The first-order effect 𝑆𝑆𝑖𝑖 of an input 
variable Xi is defined as the contribution to the output variance by varying 𝑋𝑋𝑖𝑖 alone, holding 
other inputs constant. This is calculated as: 
 

Si =
VXi �EX∼i(Y|Xi)�

V(Y)  

 

Where X~i notation indicates the set of all variables except Xi, VXi is the variance across Xi and 
EX~i

(Y|Xi) is the conditional expectation (or mean) of Y when all input variables except for Xi  
are held constant at their mean values. 

The contribution of the interaction between parameter 𝑋𝑋𝑖𝑖  and 𝑋𝑋𝑗𝑗  can be quantified by the 
second-order effect 𝑆𝑆𝑖𝑖𝑖𝑖. The second order index indicates the additional variance in Y due to 
interaction between inputs. The total effect index 𝑆𝑆𝑇𝑇𝑇𝑇  includes its first-order effect and all 
interaction effects. The total effects 𝑆𝑆𝑇𝑇𝑇𝑇 can be calculated by: 
 

STi = 1 −
VX~i �EXi(Y|X∼i)�

V(Y)  

 
This equation means the total effect index is one minus the ratio of the variance in the model 
output caused by all inputs except 𝑋𝑋𝑖𝑖 to the total variance in the model output 𝑉𝑉(𝑌𝑌).  
The interaction effect can be captured by the difference between the total effect index ST and 
the first-order index S1, which is a contribution of a single parameter to the output variance. 
When the ST value is significantly higher than the S1 value for a parameter, it suggests that the 
parameter doesn't just influence the output on its own, but also has substantial interactions with 
other parameters. These interactions contribute additional variance to the output, which is 
captured in ST but not in S1. In simpler terms, a big difference between ST and S1 indicates 
that the parameter's impact on the output is amplified or modified when combined with changes 
in other parameters. 
 

2.3 Demonstration case 
Vette Fault Zone (VFZ) in the Smeaheia area, offshore Norway, was chosen as a demonstration 
case for this study. As illustrated in Figure 2-7, the Smeaheia area is located on the eastern part 
of the Horda Platform offshore Norway, part of the north-south-trending structural high on the 
eastern side of the Viking Graben. The Smeaheia area is a fault-bounded structure to the east, 
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north and west. The VFZ is a western bound of a structural trap of Alpha closure and a west-
dipping normal fault with a prominent wedge-shaped growth section during the deposition of 
the Cromer Knoll Group (Mulrooney et al., 2020; Wu et al., 2021). The stability of VFZ has 
been evaluated by various researchers (Choi et al., 2023; Michie et al., 2021; Rahman et al., 
2021; Skurtveit et al., 2018). Although the main messages of the previous studies for VFZ are 
that the risk of failure is low, there is still a need for a better understanding of the relative 
influence of the input parameters on the stability of the faults and their interactions on the fault 
stability. Thus, we have selected the VFZ as a case study for a probability assessment with 
Sobol sensitivity. 
 

 
Figure 2-7  Location of the Smeaheia fault blocks on the Horda Platform (modified from Choi et 

al., 2023) 

13 parameters were selected as random variables for a probabilistic analysis and its sensitivity 
assessment. Table 2-1 summarizes the input parameters considered in this study.  5 parameters 
(i.e., overburden gradient OBG, pore pressure gradient PPG, Coefficient of earth pressure at 
rest K0, Ratio of the maximum horizontal stress to the minimum horizontal stress 
Sh_anisotropy_ratio, and Azimuth of maximum horizontal stress Azimuth_SH) were related to 
the initial stress conditions. Fault geometries were determined by strike and dip, and the strength 
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parameters were selected as cohesion and friction angle. In order to consider the injection-
induced stress changes, 3 parameters (i.e., Biot’s coefficient α and reservoir stress paths for 
vertical and horizontal directions γh and γv) were considered for the study. The range of the 
inputs was selected from the data used for VFZ fault stability analysis (Choi et al., 2023; Michie 
et al., 2021; Rahman et al., 2021; Skurtveit et al., 2018) and the publicly available Smeaheia 
dataset (Gassnova, 2021). In addition, a recently published data set from the Horda platform 
(Thompson et al., 2022a) was used as a supplementary dataset. When the prior information of 
the input statistic is uncertain, the ranges in literature were assumed to be within the range of 
P10 and P90 with various distribution types. After the preliminary sensitivity, the sensitivity of 
assumptions in distribution were carried out to the influential parameters. For the probabilistic 
assessment, it is assumed that all input parameters are statistically independent. The 
independent assumption is primarily due to the lack of comprehensive understanding on the 
correlation between input parameters. Also, the sensitivity analysis will more focus on the 
relationship between inputs and the output, rather than the potential correlation between inputs. 
 
Table 2-1 Input parameters used for the study 

Variables Unit Mean St.Dev.   CoV Distribution 
type 

References 

OBG MPa/
m 

2.10E-02 1.50E-03 7.1% Normal 0.019 to 0.022 from Table 
3-2 in Grande et al., 2023 
(SHARP DV1.2) 

PPG MPa/
m 

1.03E-02 1.03E-03 10.0% Normal Close to hydrostatic with 
an error of less than 10% 
from Section 3.4.1 in 
Grande et al., 2023 
(SHARP DV1.2) 

K0 - 5.00E-01 1.00E-01 20.0% Normal or 
Uniform* 

0.41-0.63 from Table 3-4 
in SHARP DV1.2 

Azimuth_SH deg 9.09E+01 2.13E+01 23.4% Normal 87 to 267 N◦E but are 
strongly concentrated 
around 90 N◦E (East-
West) is reported in 
Thompson et al. 2022a 

sh_anisotropy_ratio - 1.00E-01 1.00E-01 100.0% Log-Normal 
(shifted) 

1.01-1.27 from Thompson 
et al.2022a 

Strike deg 1.69E+02 2.92E+01 17.3% Normal Choi et al, 2023 
Dip deg 4.20E+01 1.00E+01 23.8% Log-Normal 35-70 from Michie et al., 

2021 
Cohesion MPa 1.00E+00 1.00E+00 100.0% Log-Normal or 

Uniform* 
0-2 Mpa from Thompson 
et al. 2022 

Friction_angle deg 3.00E+01 3.90E+00 13.0% Log-Normal 25-35 from Thompson et 
al., 2022a 

Reservoir stress 
paths for 
horizontal 
directions, γh 

- 5.40E-01 1.40E-01 25.9% Normal effective horizontal stress 
path coefficinet ranges 
from -0.28 to - 0.64 from 
Choi et al, 2023 

Reservoir stress 
paths for vertical 
directions, γv 

- 0.00E+00 6.00E-02 - Normal effective vertical orizontal 
stress path coefficient has 
mean of -1.0 and SD of 3-
6% from Choi et al, 2023 

Biot’s coefficient, 
α 

- 9.00E-01 1.00E-01 11.1% Uniform* Thompson et al., 2022a 
estimated the range of 
0.82-0.95 based on drained 
bulk modulus and 
Poisson's ratio. 
Other studies assumed it as 
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1.0 (Choi et al., 2023, 
Rahman et al., 2022) 

Depth of faults m 900-1400     Deterministic Gassnova 2021 
* For the uniform distribution, the range is defined as [mean-std.,mean+std.] 

2.4 Results 

2.4.1 Probability of failure 

Table 2-2 summarizes the results from a Monte Carlo Simulation (MCS) conducted to evaluate 
the critical injection pressure and mobilized shear strength at various depths and pressure 
changes. The table presents both deterministic and probabilistic results, reflecting the mean 
values as well as the 10th (P10), 50th (P50), and 90th (P90) percentiles of the distributions, 
alongside the probability of failure (Pf). The ΔPP in the table stands for the change in pore 
pressure caused by CO2 injection. As expected, an increase in injection pressure (i.e., ΔPP > 0 
) decreases the critical injection pressure. However, the effect on critical injection pressure is 
less pronounced than expected. For instance, at a depth of 890m, an increase of 2.0 MPa in ΔPP 
leads to a reduction in the mean critical injection pressure of only ~0.5 MPa, which is from 6.30 
MPa to 5.84 MPa, a change smaller than the applied pressure increment. This observation 
suggests that the computed critical injection pressures may be more conservative than actual 
critical values. In contrast, mobilized shear strength demonstrates a counter-intuitive trend. It 
becomes more stable (lower mobilized shear strength values) with increasing ΔPP. Similar 
counterintuitive results is also observed in the deeper depth. The increasing depth from 890m 
to 1400m leads to higher mean critical injection pressure showing more stable condition, but 
the mobilized shear strength values show opposite trends. This conflicting behaviour in critical 
injection pressure and mobilized shear strength underlines the need for a more representative 
measure of stability, as these metrics alone may not fully capture the complex dynamics of 
subsurface systems. 
The calculated probability of failure (Pf) shows consistent values regardless of the specific 
stability criterion because it counts unstable cases. In deterministic assessments, critical 
injection pressure and mobilized shear strength both serve as indicators of proximity to failure. 
However, their different bases can lead to apparent inconsistencies in assessing how close a 
system is to failure. Despite this, they may still concur on a binary outcome—whether a system 
has failed. The probabilistic method gains its strength from the use of consistent 'fail' or 'stable' 
outputs across different failure criteria. This consistency in binary outputs, regardless of the 
definition, allows for a consistent evaluation of system stability. Furthermore, by analysing the 
distribution of these binary results, the probabilistic approach can quantify the proximity of 
failure. The consistency and proximity of failure present an advantage of probabilistic 
assessment over deterministic methods. 
The calculated Pf indicates a general increase with depth, aligning more closely with the trends 
observed in mobilized shear strength. However, the impact of ΔPP on Pf varies with depth; 
while increasing injection pressure at shallower depths seems to increase the risk of failure, 
deeper systems exhibit a reduced Pf with increased ΔPP. As illustrated by the stress paths in 
Figure 2-8, although the same increase in ΔPP are considered with the same material properties, 
different depth can lead to different stress paths and associated differences regarding fault 
stability. Particularly, the assumption of a fixed horizontal stress path used in the allowable 
injection pressure may result in an error in the prediction of future stability. The consistent 
increase in Pf with depth, despite the contrasting effects on critical injection pressure and 
mobilized shear strength, underscores the importance of utilizing Pf as a key measure in fault 
stability assessments. However, this also highlights the need for a better understanding of the 
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individual contributions of these inputs and their complex interactions to effectively interpret 
and manage subsurface stability risks. 
Table 2-2 Calculated results from MCS 

Depth  
[msl] 

ΔPP  
[MPa] 

Critical_injection_pressure  [MPa] Mobilized shear strength  [-] 
P10 P50 P90 Mean Std. Pf P10 P50 P90 Mean Std. Pf 

890m 
0.0 3.61 6.30 9.12 6.30 2.13 2.77E-04 0.14 0.32 0.52 0.32 0.15 2.77E-04 

1.0 3.47 6.02 8.82 6.09 2.07 2.94E-04 0.12 0.29 0.50 0.30 0.15 2.94E-04 

2.0 3.29 5.79 8.47 5.84 2.00 3.88E-04 0.11 0.26 0.48 0.28 0.15 3.88E-04 

1400m 
0.0 4.95 8.74 13.09 8.90 3.14 4.81E-04 0.15 0.33 0.56 0.35 0.16 4.81E-04 

2.0 4.69 8.35 12.43 8.47 2.99 4.64E-04 0.12 0.30 0.53 0.32 0.16 4.64E-04 

 

 
Figure 2-8  Stress paths at 890m (red) and 1400m (green) depths during a 2.0 MPa pore pressure 

increase, based on median parameters (P50). 

 

2.4.2 Sensitivity analysis 

Figure 2-9 shows the Sobol sensitivity indices (S1 for first-order effects and ST for total effects, 
which include interactions) for input variables affecting fault stability at 890m depth. Figure 
2-9a) represent the scenario before injection and the figure b) shows the results after a 2MPa 
pressure increase. The results show that 'sh_anisotropy_ratio' (Horizontal total stress 
anisotropy) and 'K0' (in-situ effective horizontal stress ratio), and ‘Cohesion’ are key 
parameters with high ST values before the injection. For the post-injection case (Figure b), 
‘Cohesion’ emerges as the most influential parameter. As addressed in the previous section 
2.2.3, S1 values represent the independent effect of an input variable, while ST accounts both 
for the interaction with other variables and the independent contribution. Thus, the difference 
between S1 and ST typically indicates the contribution of interaction with other parameters. 
‘K0’ and ‘Cohesion’ shows relatively small difference between S1 and ST, indicating its 
independent influence on the uncertainties in fault stability assessment. However, although 
'Azimuth_SH' and 'strike' have relatively high ST, they have relatively larger differences 
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between S1 and ST values, indicating significant interaction effects. Also, 'sh_anisotropy_ratio' 
has higher difference between S1 and ST comparing to other influential parameters ‘K0’ and 
‘Cohesion’. The observed interaction contribution for directional parameters for stress 
'Azimuth_SH' and fault geometry 'strike' as well as its magnitude 'sh_anisotropy_ratio' can be 
explained by a mechanism of stress acting on the fault plane. For example, if the fault is parallel 
to its maximum principal stresses, the stress acting on faults is purely governed by vertical and 
minimum horizontal stresses but not by the maximum horizontal stresses. In such cases, the 
uncertainties related to the maximum horizontal stress do not affect the fault stability. Thus, 
those uncertainties might become meaningful when they interact with other parameters. This 
observation highlights the novelty of Sobol’ sensitivity analysis that can identify the relative 
importance of inputs and their interaction to the stability output. 

 
Figure 2-9  Total and first order Sobol’ sensitivity index for the case with depth of 890m for a) 

before injection and b) after 2MP of pressure increase 

 
Figure 2-10 compares the total Sobol sensitivity indices at two different depths, 890m and 
1400m, each after a 2MPa pressure increase. As depth deeper, parameters associated with 
horizontal stresses, which are 'K0', 'Azimuth_SH', and 'sh_anisotropy_ratio', emerge as most 
influential. However, 'Cohesion', which shows the highest sensitivity at 890m with an ST of 
0.2676, become less important at 1400m than the parameters related to horizontal stresses. In 
the previous MCS for Pf, the impact of ΔPP on Pf with depth were oppositely observed, which 
shows increasing the risk of failure with ΔPP at shallow depth but reduced Pf with ΔPP at 
deeper depth. The relative importance observed in Figure 2-10 may explain its trend. At the 
shallow depth, the strength parameter, particularly cohesion, governs the stability rather than 
stress acting on the faults. Thus, while injection-induced stress shifts a condition to a stress 
failure envelope, the injection-induced stress change does not influence the stability and can be 
more likely to make the fault stability more critical without having much room to change the 
stress. However, for the deeper depth, the stability of faults is mostly governed by stress 
parameters acting on the faults. In such a case, while injection-induced pore pressure changes 
the stress, the stress changes may have more room to change the relationship to its stability. 
That may partially explain counter-intuitive observation at the deeper depth. 
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Figure 2-10  Effect of depth variation on total Sobol sensitivity index  

 

2.5 Discussion 
The results of this case study support the consensus of low probability of failure for the Vette 
fault zone, aligning with recent studies (Choi et al., 2023; Michie et al., 2021; Rahman et al., 
2021; Skurtveit et al., 2018; Thompson et al., 2022a). However, although previous studies for 
Vette fault zone concluded similar stability ranges, those studies have focused on different 
aspects: Skurtveit et al. (2018) emphasised cohesion, (Michie et al., 2021) on fault-picking 
uncertainty, and Choi et al. (2023) on the reservoir stress path coefficient. Consequently, it was 
difficult to get an integrated overview considering the influence of other factors. However, the 
results of the sensitivity index suggested in this study (e.g., cohesion and horizontal stress 
parameters for this demonstration case) can clarify the parameters to be prioritised for further 
investigation or monitoring. The novelty of this study is thus the strategic use of sensitivity 
results with Pf for resource prioritisation in early field development. This information provides 
a clearer understanding of fault mechanics and reduces unnecessary costs and efforts to tune 
the less important parameters.  
 

3 Bayesian modelling for site-specific stress prediction 

3.1 Background 
Reliable prediction of the in-situ minimum horizontal stress σh  is crucial for the safe 
development and operation of CO2 storage, as σh is an essential input parameter for assessing 
containment and induced seismic risks in the screening of CO2 storage sites (Thompson et al., 
2022aa; Wu et al., 2021, 2022). To infer the minimum horizontal stress at any given depth at a 
site, the customary approach is to perform a deterministic regression analysis of stress data as 
a function of depth and treat the line of best fit as the predicted site-specific stress profile 
(Andrews et al., 2016; Andrews and de Lesquen, 2019; Thompson et al., 2022b). This 
regression approach is the practical way to deal with the horizontal stresses in the industry, 
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however, in reality the horizontal stresses are depth dependent influenced by the lithology 
variations (DV3.2) and stress history including burial history, unloading from erosion and 
glacial loading and potential tectonics (SHARP reports DV1.1b  and DV1.2.). 
 
Stress data are often highly limited at CO2 storage sites and may be even completely unavailable 
in the early site screening stages. For example, the Aurora CO2 storage site under construction 
in the Norwegian North Sea has only five σh measurements available at best obtained using 
different measurement methods. Such limited stress data may significantly underrepresent the 
true depth-wise stress distribution at a storage site, and when coupled with other sources of 
uncertainty (e.g., measurement error and spatial variability), can reduce reliability in the site-
specific stress predictions. In addition, stress uncertainty is the required input information in 
the more rational probabilistic risk assessment framework (e.g., probabilistic fault stability 
assessment in this report), because CO2 storage integrity is mostly governed by weak locations 
(i.e., on faults or caprocks) that are related to conservative (high or low) estimates rather than 
the best estimates of uncertain geomechanical parameters. Hence, it is crucial to quantify and 
reduce uncertainty in site-specific stress prediction for CO2 storage.  
 
A natural approach to reduce stress prediction uncertainty is to augment the limited site-specific 
stress data for statistical analysis with prior information from other sources, such as nearby 
stress data, engineering judgement, geological indicators (e.g., faulting stress regime, frictional 
faulting theory) and indirect stress measurements (e.g., borehole breakouts, well logging and 
drilling-induced tensile fractures). Borrowing prior stress information may be inevitable when 
site-specific stress data are non-existent. Nevertheless, integrating prior information into 
statistical analysis of site-specific stress data is neither automatic nor straightforward. When 
facing limited data for a site of interest, the common practice is to either directly use the 
published stress trends from other sites/regions having richer data or expand the coverage area 
to include data from nearby sites. Such practice is usually made when different sites involved 
have similar geological settings (e.g., lithology, pore pressure and structures and segments if 
faulted areas) that allow assuming similar mean stress trends between sites. However, such 
semi-subjective borrowing of historical stress data, although effective in many cases, may lead 
to arbitrarily overconfident stress predictions when stress heterogeneity between sites is non-
negligible. 
 
The customary deterministic statistical analysis of stress data neither quantifies uncertainties 
about stress predictions nor offers a rigorous approach to integrating historical data for reducing 
the uncertainties. Unfortunately, there also seems a lack of studies in the literature on rigorous 
statistical integration of historical data into site-specific stress prediction in the context of CO2 
storage. Bayesian inference has been widely used as a rigorous and powerful statistical 
approach for quantifying uncertainty, as well as combining information from different sources 
via informative prior distributions. Hence, historical stress data may be integrated into Bayesian 
analysis of site-specific data in the form of prior distributions, with stress uncertainties being 
quantified and updated as the posterior distributions (Bao and Burghardt, 2022; Feng et al., 
2023, 2021, 2020). Since posterior distributions from one Bayesian analysis can be used directly, 
or with modification, as prior distributions for a future analysis, informative priors are often 
constructed by Bayesian modelling of historical and other relevant data. When developing prior 
distributions for site-specific stress prediction, it may be tempting to follow the common 
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practice to perform a holistic Bayesian analysis of all stress data combined, yet such approach—
statistically known as complete pooling—may result in overconfident borrowing of prior 
information and hence misleading stress predictions in that it ignores the stress heterogeneity 
between sites. 
 
This section presents a Bayesian hierarchical modelling (BHM) approach for quantifying and 
reducing uncertainties in site-specific stress predictions and uses the Aurora and Smeaheia CO2 
storage sites to showcase how BHM enables logical borrowing of nearby historical stress data 
by accounting for between-site heterogeneity/similarity compared to the customary complete 
pooling approach. The proposed methodology provides more reliable uncertainty 
characterisation of stress predictions for the sake of robust probabilistic risk assessment related 
to CO2 storage. 
 

3.2 Study area and stress data 
On the Norwegian continental shelf, extensive databases of field injection tests have been 
accumulated from drilling in oil and gas projects and sorted mainly into three categories; 
formation integrity tests (FITs), leak-off tests (LOTs), and extended leak-off tests (XLOTs) 
While XLOT data are considered the most accurate for estimation of minimum horizontal stress 
among the three types of injections tests, they are highly limited in numbers due to the great 
cost and normally kept confidential within energy companies. The Norwegian Petroleum 
Directorate (NPD) has made the LOT and FIT data publicly available through 
https://factpages.sodir.no/. Since LOT data literally account for the entire NPD database and 
are also considered more accurate than FIT, this report will not include the latter type of stress 
data. A collection of LOT data from the database for the entire Norwegian continental shelf has 
been made through previous studies (Choi et al., 2019), and further sorting and systematisation 
were done for selected wider Horda platform study area under SHARP DV1.2. The DV1.2 
report discusses the influence of geology and stress history to explain the variations in observed 
stress trends and individual measurement points. For more discussion on uncertainties related 
to estimating the stress from the three types of injection test data, see the short summary in 
report DV5.1 and more detailed in the original references Raaen et al., 2006 and Andrews et 
al., 2016. 
 
Figure 3-1 shows the study area (i.e., Section A and Section B) of the SHARP project 
surrounding the Aurora and Smeaheia storage sites in the Norwegian North Sea, and Section A 
as the main study area includes 10 sites (or fields): Martin Linge, Oseberg, Oseberg East, Huldra, 
Veslefrikk, Brage, Aurora, Troll West, Troll East and Smeaheia. All sites are situated in a 
relaxed sedimentary basin, and stress data are sampled far above the basement boundary. It can 
then be argued that gravitational loading dominates. However, they have quite different stress 
histories when it comes to burial diagenesis and tectonic history, including erosion, uplift and 
isostasy after episodes of glacial loading (see DV1.2). While stress data from all these 
potentially similar sites may be used to demonstrate the integration of historical data via BHM, 
here we restrict to the sites located on the same geological structure Horda Platform (HP) as the 
target storage sites, i.e., Aurora, Smeaheia, Brage, Oseberg HP (the part of Oseberg within HP), 
Troll East and Troll West. From a geological point of view, sites on the same geological 
structure (i.e., within HP) are expected to be more similar in their in-situ stress distributions 
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relative to sites on other structures in the same basin (i.e., Viking Graben and East Shetland 
Platform). The common assumption in the industry is hydrostatic pore pressure in most of the 
HP area, also at depth > 3 km, the assumption in the industry is hydrostatic, although with less 
confidence due to lack of deep LOT data (see discussion DV1.2). A local buildup of pore 
pressure and horizontal stresses may be relevant in certain formations, especially in low 
permeable tertiary units rich in smectite which can be high locally. Such effects have been 
discussed and analyzed in DV1.3. Pore pressure distributions at the excluded sites on other 
structures have excess pore pressure, especially below 3km, significantly impacting the in-situ 
horizontal stress (excess pore pressure from diagenesis with impact on minimum horizontal 
stress from poroelasticity). NPD database does not provide measurement data of the pore 
pressure other than in permeable formations (reservoir) typically a distance away from the LOT 
test. Hence, to reduce the data uncertainty from pore pressure, this analysis focuses on the HP 
where hydrostatic pressure is the governing assumption. It should be noted that data selection 
in any data analysis is a nontrivial task, and may involve an iterative process with justification 
to determine a reasonable set of data to be included in the analysis. More details regarding the 
wide study area and associated NPD database can be found in the SHARP report of DV1.2. 
 

 
Figure 3-1  Study areas A and B. The oil and gas fields and CCS sites are indicated. East Shetland 

Basin and Lomre Terrace (green), Viking Graben (yellow) and Horda Platform (violet). 
Structures/fault segments are indicated with numbers 1-7 (map from DV1.2). 

 

Figure 3-2 displays the data distribution of σh
c  versus depth below seafloor (< 3000 m) for the 

six selected HP sites, where σh
c  is the corrected minimum horizontal stress by subtracting the 

water column at seabed from σh. In this figure, the predominant LOT data are from the public 
NPD database, and the three high-quality XLOTs conducted at the two storage sites (two for 
Aurora and one for Smeaheia) are published by Equinor (Thompson et al., 2022b; Wu et al., 
2022) and are also included here to augment the data at the storage sites, albeit still limited in 
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numbers. Note that while XLOT data are generally more accurate than LOT data, accounting 
for their respective measurement errors in the statistical analysis is nontrivial and beyond the 
scope of this report. Figure 3-2 shows that, although XLOT data has been included, the Aurora 
and Smeaheia storage sites still have only 5 and 3 stress measurements, respectively, while their 
nearby 4 sites on the same HP structure have as many as 77 data points. Indeed, with this limited 
stress data coupled with measurement errors and spatial variability, it is difficult to obtain 
meaningful stress profile predictions without external information. Hence, it is justifiable to 
integrate stress information from the nearby sites to constrain the stress predictions at the 
storage sites which are subject to a lack of data. 
 

 
Figure 3-2 Stress data distribution from the 6 sites within the Horda Platform arranged by sites. 𝜎𝜎h

c is 
the corrected minimum horizontal stress by subtracting the water column at seabed 
from the total minimum horizontal stress 𝜎𝜎h. 

 

3.3 Bayesian regression models 
3.3.1 Basics 

For data that can be structured into subgroups (e.g., site herein), there are three general statistical 
modelling approaches, namely, complete pooling, no pooling and partial pooling, details about 
which may be found in generic textbooks such as Gelman et al. (2013), with summary 
overviews for geotechnical applications by Bozorgzadeh and Bathurst (2022) and 
Feng et al. (2023). Here, only a brief introduction is provided. 
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The complete pooling model assumes a single set of common parameters for the whole dataset 
that comprises multiple subgroups, which is the customary modelling approach when 
attempting to integrate stress data from nearby areas as a means of augmenting the limited data 
at the target stie. This model ignores possible variations between groups. No pooling refers to 
fitting a model independently to each group of data. The no pooling model is often impractical 
for geotechnical data analysis since we usually do not have sufficient data per most groups (e.g., 
one site, one location, or one unit at one location) to allow for meaningful separate model fitting. 
As mentioned earlier, only three and five minimum horizontal stress measurements are 
available at the Smeaheia and Aurora storage sites, respectively, and in some cases stress data 
are not available under screening stage of CO2 storage sites (i.e Lisa, DK, see DV1.2 and 
DV3.2). 
 
The complete pooling model assumes that group-specific model parameters are identical, while 
the no-pooling model assumes that they are independent. These two implicit assumptions are 
too strong considering the nature of geo-material and stress data. These assumptions can lead 
to under-exploitation of the data and, thus, suboptimal model performance. For instance, we 
would expect that the stress profiles at nearby sites within a structure like the HP area have 
some degree of similarity, rather than completely identical or different. 
 
Partial pooling modelling (also called hierarchical modelling) strikes the middle ground 
between complete pooling and no pooling modelling in that it allows for group-varying model 
parameters which are assumed to be similar rather than necessarily identical or independent. 
This between-group similarity assumption, formally known as exchangeability, is implemented 
by assuming a higher-level population distribution with unknown hyperparameters for the 
group-specific parameters, thus allowing borrowing information across groups when estimating 
parameters (Gelman et al., 2013). Partial pooling can be thought of as a continuous 
generalisation of the two extreme cases of the complete pooling and no pooling modelling 
approaches: it reduces to the complete pooling and no pooling cases when the between-group 
variance goes to zero and infinity, respectively. Note that in this report, the partial pooling 
model and hierarchical model are referred to interchangeably. 
 

3.3.2 Stress prediction equations 

There exist a variety of 1D in-situ stress equations for predicting the magnitude of the minimum 
horizontal stress as a function of depth (see Zang and Stephansson, 2009 and Zhang et al., 2021 
for an overview). The most widely used 1D stress prediction equation in geomechanical 
analysis is the so-called elastic-tectonic model assuming a constitutive relation of linear 
poroelasticity (Thiercelin and Plumb, 1994); this model has formulations for both isotropic and 
transversely isotropic rocks, with the simpler former formulation written as 

σh =
ν

1 − ν
�σv − αPp� + αPp +

E
1 − ν2

εh +
Eν

1 − ν2
εH (3.1) 

where ν and 𝐸𝐸 are respectively the Poisson’s ratio and Young’s modulus of rocks, 𝑃𝑃p is the pore 
pressure, α is the Biot’s coefficient, and εh and εH are the depth-uniform tectonic strains in the 
directions of the minimum and maximum horizontal stresses, respectively.  
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This elastic-tectonic model is a generalisation of the elastic uniaxial strain model considering 
the effect of only gravitational loading on horizontal stresses (Anderson et al., 1973), and 
reduces to such if the tectonic component is assumed to be zero. The advantage of this type of 
physics-based stress prediction model is that it explicitly accounts for individual stressing 
components (e.g., overburden stress, pore pressure and tectonic loading) as well as rocks’ 
properties in determining the horizontal principal stresses, and when calibrated properly with 
relevant measured data, it has the flexibility to give reasonable stress predictions in various 
geological settings. 
 
Unfortunately, the NPD stress database does not come with measurements of pore pressure and 
rocks’ poroelastic properties, so this report adopts the simple stress prediction equation as a 
function of depth directly. Such an empirical stress prediction approach is also common in 
practice, especially when the stress scale of interest is large (e.g., Andrews et al., 2016; Andrews 
and de Lesquen, 2019; Breckels and van Eekelen, 1982; Thompson et al., 2022a). Here, we use 
a linear function as the stress prediction equation to demonstrate BHM for integrating stress 
information from different sites, which is written in the form as 

σh = β0 + β1d + γ�𝑃𝑃p − 𝑃𝑃pN� (3.2) 
where 𝑑𝑑 is the depth (below sea floor), 𝑃𝑃p is the measured pore pressure, 𝑃𝑃pN is the hydrostatic 
pore pressure, γ is the pore pressure/stress coupling coefficient accounting for the effect of non-
hydrostatic pore pressure on the total minimum horizontal stress (Breckels and van Eekelen, 
1982; Hillis, 2001), β0 is the unknown intercept parameter which can be considered as the 
tectonic stress component in the minimum horizontal stress direction, and β1 is the unknown 
slope parameter. Because the pore pressure on HP is assumed to be hydrostatic, the last term of 
Eq. (3.2) becomes zero. 
 
It should be noted that the linear function in Eq. (3.2) could also be replaced with a power 
function or a polynomial function of depth to account for the possible nonlinear depth variation 
of the underlying stress states. Again, there are many available 1D stress prediction equations 
based on physics and/or empiricism. Since this report focuses on demonstrating how BHM 
allows logical borrowing of stress information from nearby sites, the task of identifying the best 
stress prediction equation among available candidate models is beyond the scope of this report. 
Nonetheless, the formal Bayesian model comparison approach presented in Section 3.4.3 can 
be applied to this task if it is of interest. It is worth noting that the choice of the stress prediction 
equation is usually subject to the availability of various data types, geological understanding, 
and project needs. 
 

3.3.3 Complete pooling model 

In the complete pooling model, the parameters are assumed to be identical across different sites, 
i.e., a set of global parameters that do not vary between sites. Hence, the complete pooling 
regression model based on the prediction equation of Eq. (3.2) can be written for data points 
𝑖𝑖 = 1, … ,𝑁𝑁 as 

σh(𝑖𝑖)
c = 𝔼𝔼�σh(𝑖𝑖)

c � + 𝑒𝑒𝑖𝑖 = β0 + β1𝑑𝑑𝑖𝑖 + 𝑒𝑒𝑖𝑖 (3.3) 
𝑒𝑒𝑖𝑖 ∼ Normal(0, 𝜏𝜏2) (3.4) 
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where 𝔼𝔼[⋅]  denotes expected (mean) value, {β0,β1}  are the two regression coefficient 
parameters; 𝑒𝑒𝑖𝑖 is the residual error reflecting the discrepancy between the measured stress value 
and the predicted value by the adopted stress prediction equation, and is assumed to follow a 
zero-mean normal distribution with common variance 𝜏𝜏2. 
Equations (3.3) and (3.4) constitute the likelihood function for observations of minimum 
horizontal stresses. The model parameters {β0,β1, 𝜏𝜏} require specification of prior distributions 
in the Bayesian framework. Throughout this report, weakly informative priors are adopted for 
the parameters of all models to reflect the absence of prior knowledge about their specific 
values. Here, the following weakly informative priors are assigned: 

β0 ∼ Normal(0, 42) (3.5) 
β1 ∼ Normal(0, 0.12) (3.6) 
𝜏𝜏 ∼ Half-Normal(0, 42) (3.7) 
where ς is assumed a half-normal prior distribution to enforce its strictly positive range. The 
above priors express weak prior knowledge that the values of the three parameters {β0,β1, 𝜏𝜏} 
will most likely (with roughly 0.95 probability) fall between (-8, 8), (-0.2, 0.2) and (0, 8), 
respectively. The weakly soft constraints on the parameters implied by these priors are 
reasonable considering the realistic ranges of the data; the same reasoning applies to the priors 
chosen for the Bayesian partial pooling (hierarchical) model in the report.  
 
With priors and likelihood function specified, the posterior distribution can be formulated based 
on Bayes’ rule as the product of the priors and likelihood up to a normalising constant. In most 
cases, posterior distributions of parameters are analytically intractable and numerically 
approximated using the simulation method known as Markov chain Monte Carlo. 
 

3.3.4 Partial pooling model 

The partial pooling (i.e., hierarchical) model explicitly accounts for between-group variations 
by assuming a population with unknown parameters for the (exchangeable) group-specific 
parameters, thus allowing for the borrowing of information amongst them. The partial pooling 
model chosen in this report assumes exchangeable intercepts 𝛽𝛽0 and slopes β1 with ς being set 
as identical across sites. 
 

Suppose a given stress dataset can be grouped into 𝐽𝐽 sites, with each site 𝑗𝑗 (𝑗𝑗 = 1,2, … , 𝐽𝐽) having 
𝑁𝑁𝑗𝑗 data points. The partial pooling model can be formulated for data points 𝑖𝑖 = 1,2, … , 𝑛𝑛𝑗𝑗 at 
sites 𝑗𝑗 = 1,2, … , 𝐽𝐽 as 

σh(𝑖𝑖𝑖𝑖)
c = 𝔼𝔼�σh(𝑖𝑖𝑖𝑖)

c � + 𝑒𝑒𝑖𝑖𝑖𝑖 = β0(𝑗𝑗) + β1(𝑗𝑗)𝑑𝑑𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 (3.8) 
𝑒𝑒𝑖𝑖𝑖𝑖 ∼ Normal(0, 𝜏𝜏2) (3.9) 
where β0(𝑗𝑗)  and β1(𝑗𝑗)  are the model parameters specific to site 𝑗𝑗  (not common parameters 
across sites). Their respective population distributions to encode the exchangeability 
assumption to allow for between-site similarity/heterogeneity are specified as a common 
normal prior distribution with unknown hyperparameters (i.e., parameters of priors) as 
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β0(𝑗𝑗) ∼ Normal�μβ0 , τβ0
2 � (3.10) 

β1(𝑗𝑗) ∼ Normal�μβ1 , τβ1
2 � (3.11) 

where 𝜇𝜇𝛽𝛽0 and 𝜏𝜏𝛽𝛽0
2  are the mean and variance of the assumed population of site-varying 𝛽𝛽0s, 

and 𝜇𝜇𝛽𝛽1 and 𝜏𝜏𝛽𝛽1
2  are the mean and variance of the assumed population of site-varying 𝛽𝛽1s. The 

four hyperparameters are assigned the following weakly informative hyperpriors (i.e., priors on 
hyperparameters) as 

μβ0 ∼ Normal(0, 42) (3.12) 
τβ0 ∼ Half-Normal(0, 12) (3.13) 
μβ1 ∼ Normal(0, 0.12) (3.14) 
τβ1 ∼ Half-Normal(0, 0.0252) (3.15) 
 

The weakly informative prior for the standard deviation τ of the residual errors is assigned the 
same as the complete pooling model as 
 

τ ∼ Half-Normal(0,  42) (3.16) 
 

3.4 Results 
In this report, all Bayesian models are fitted using the probabilistic programming language Stan 
(Stan Development Team, 2023) which uses the No-U-Turn Sampler (Carpenter et al., 2017; 
Hoffman & Gelman, 2014) for Markov chain Monte Carlo simulation. Three Markov chains, 
each consisting of 3000 simulated posterior draws, are run in parallel to assess their 
convergence and approximate parameters’ posterior distributions. Simulated posterior 
distributions are usually summarised by their means and spreads (e.g., credible intervals (CIs) 
and standard deviations (SDs)) that are taken as the best estimates and associated uncertainties 
of the parameters, respectively. 
 

3.4.1 Posterior estimation 

Figure 3-3 illustrates the posterior estimates of the two regression coefficients β0 and β1 (i.e., 
intercept and slope parameters) from the customary complete pooling model and the proposed 
partial pooling (hierarchical) model. It is obvious that the complete pooling estimates of both 
β0 and β1 exhibit remarkably less uncertainties as indicated by the narrower 95% CIs compared 
to the partial pooling estimates. However, as will be shown later, these parameter estimates are 
overly confident due to the disregard for the between-site stress heterogeneity (i.e., a common 
set of model parameters for all sites) when integrating stress data from different sites, hence 
leading to sub-optimal stress predictions. 
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Figure 3-3 Posterior means and 95% credible intervals (CIs) of model parameters from the complete 

pooling and partial pooling (i.e., hierarchical) models 

Figure 3-4 shows the posterior means and 95% CIs of the fitted minimum horizontal stress 𝜎𝜎h
c  

against the measured values obtained from the complete and partial pooling models. It can be 
seen that both models give a reasonably good fit to the measured stress data, particularly to 
smaller stress values at shallower depths. The relatively poorer fit to the larger stress values 
may be attributed to the deviation from the assumed hydrostatic pore pressure at greater depths. 
This figure also shows that the complete pooling model gives smaller uncertainties (narrower 
95% CIs) in the fitted values propagated from its overconfident parameter uncertainties, the 
partial pooling model yields fitted 𝜎𝜎h

c values (i.e., posterior means) that are notably closer to the 
measured values for the interested Aurora storage site.  

 
Figure 3-4 Posterior means and 95% credible intervals (CIs) of fitted 𝜎𝜎h

c versus measured 𝜎𝜎h
c from 

the complete pooling and partial pooling (i.e., hierarchical) models 
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3.4.2 Posterior prediction 

Figure 3-5 displays the posterior predictions (after observing site-specific data) of the minimum 
horizontal stress profiles along with their 90% predictive intervals (PIs) obtained from the 
complete and partial pooling models. It can be seen that for the Aurora site, the complete 
pooling model generally over-predicts all measured stress data, particularly for the two data 
points at great depths which are not even captured by the 90% PIs. On the other hand, the partial 
pooling model is able to adapt to all stress data including the two deep stress measurements. 
These two models in question also exhibit a substantial difference in the predicted stress profiles 
at greater depths at the Smeaheia site where there is only limited data, while the two sets of 
predictions at the other four sites with abundant data are practically the same. Such observation 
indicates that the complete pooling model cannot reasonably adapt to the limited local data as 
it considers all sites to be statistically identical and thus integrates a large number of data from 
other sites directly without any discounting, while the partial pooling model borrows more 
appropriate information from other sites by accounting for the between-site similarity (also 
heterogeneity) in the data. 
It should be noted that the linear trend in Figure 3-5 is only valid near the caprocks where the 
data points exist. The high stresses at the sea floor may not reflect the field condition and should 
not be used. In the further study, the regression function could also be replaced with a power 
function or a polynomial function of depth including the origin at the sea floor to account for 
the possible nonlinear depth variation of the underlying stress states. 
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Figure 3-5 Predicted profiles of the minimum horizontal stress from the Bayesian complete pooling 
and partial pooling (hierarchical) models. (The solid black line represents the best predictions of stress 
states along depth, and two dotted lines represent the predictive uncertainty range of stresses with a 
probability of 0.9) 

 

3.4.3 Model comparison based on out-of-sample prediction 

This section provides a formal comparison of the Bayesian complete pooling and partial pooling 
models in question. Statistical models are usually compared based on their out-of-sample 
predictive accuracy, which can be estimated by two general approaches, namely, cross-
validation and information criteria (e.g., AIC and DIC) being approximations to different 
versions of the former approach. For probabilistic models, a common measure of predictive 
accuracy is the expected log predictive density (elpd), and larger elpd indicates higher expected 
predictive accuracy. In this study, we use the widely advocated and most accurate leave-one-
out cross-validation (LOO-CV) approach to estimate the elpd for all Bayesian regression 
models. 
Here, we briefly introduce the LOO-CV method for Bayesian model comparison, and refer 
readers for more details to the standard statistics texts (Gelman et al., 2013, 2014; Vehtari et al., 
2017) and relevant geotechnical and geoscience literature (Bozorgzadeh & Bathurst, 2019; 
Feng et al., 2023). Suppose we have a dataset {𝑦𝑦1, … ,𝑦𝑦𝑛𝑛} that is modelled using a Bayesian 
model conditioned on parameters 𝜃𝜃. LOO-CV estimates the elpd and its standard error (SE) by 
iteratively fitting the model to the held dataset 𝑦𝑦−𝑖𝑖 after leaving out one data point 𝑦𝑦𝑖𝑖: 
 

elpdLOO = � log 𝑝𝑝(𝑦𝑦𝑖𝑖|𝑦𝑦−𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= � log�𝑝𝑝(𝑦𝑦𝑖𝑖|𝜃𝜃)𝑝𝑝(𝜃𝜃|𝑦𝑦−𝑖𝑖) d𝜃𝜃
𝑛𝑛

𝑖𝑖=1

 (3.17) 

SE(elpdLOO) = �𝑛𝑛V𝑖𝑖=1
𝑛𝑛 [log𝑝𝑝(𝑦𝑦𝑖𝑖|𝑦𝑦−𝑖𝑖)] (3.18) 

 

where log 𝑝𝑝(𝑦𝑦𝑖𝑖|𝑦𝑦−𝑖𝑖) and 𝑝𝑝(𝑦𝑦𝑖𝑖|𝜃𝜃) are the pointwise log predictive density and the likelihood for 
the left-out data point 𝑦𝑦𝑖𝑖 , respectively, 𝑝𝑝(𝜃𝜃|𝑦𝑦−𝑖𝑖) is the posterior distribution of 𝜃𝜃  from the 
model fitted to 𝑦𝑦−𝑖𝑖 and V(⋅) denotes the variance operator. Note that the standard error comes 
from considering the observed data of size 𝑛𝑛 as a sample from the underlying data population. 
In this study, it is the measured minimum horizontal stresses that are left out for comparison to 
their predicted values. 
 
Table 3-1 summarises the elpd estimates for both statistical models and their differences (i.e., 
Δelpd) relative to the largest elpd estimate of −449.6 from the proposed partial pooling model. 
It is shown that the partial pooling model has a significantly better predictive performance than 
the baseline complete pooling model, as manifested by their elpd difference of −8.0 being nearly 
2 times larger than its standard error of 4.2. Hence, from a viewpoint of out-of-sample predictive 
accuracy (generalisation performance) about stresses, the proposed partial pooling model via 
BHM should be preferred over the customary complete pooling model. 
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Table 3-1 LOO-CV model comparison 

Model Parameter configuration elpd(SE) Δelpd(SE) 

Partial pooling Exchangeable β0 and β1, and 
complete pooling ς across sites −449.6(22.1) 0 

Complete pooling Complete pooling all model 
parameters across sites −457.6(20.6) −8.0(4.2) 

elpd: expected log predictive density 

Δelpd: difference in elpd between each model and the model with largest elpd 

SE: standard error of estimated elpd 

 

4 Conclusion 

This study introduces a comprehensive workflow for probabilistic fault stability assessment for 
a CO2 storage, focusing on quantifying uncertainties in assessment, ranking the importance of 
various parameters affecting fault stability, and Bayesian updating for reducing uncertainties in 
critical inputs. The study also demonstrates the methods using cases in the Horda platform in 
North Sea, including Vette fault zone western boundary fault of Smeaheia area. 
 
The key conclusions from the workflow for probabilistic fault stability assessment are: 

• Probability of failure can be used as a more reliable stability measure compared to 
traditional deterministic measures (e.g., allowable injection pressure, mobilized shear 
strength), particularly when conventional criteria yield conflicting assessment. 

• Demonstration case illustrates the effectiveness of Sobol sensitivity analysis in 
identifying the ranking of inputs and understanding parameter interaction.  

• This study clearly demonstrates the value of Pf as a quantitative measure for stability 
assessment and resource prioritisation in early field development by clarifying the 
parameter to be prioritized for further investigation or monitoring. 

Main findings from the study on stress estimates using Bayesian approach are as follows: 

• Stress data from nearby sites in a relatively homogeneous geological setting (e.g., 
sedimentary basin where gravitational forces dominate, hydrostatic pore pressure, 
limited impact of tectonics) indeed provide useful constraining information for sites 
where stress measurements are scarce Note: This exercise was for demonstration of 
methodology in the relative homogenous HP area, however,  the lithology, burial 
compaction, uplift and glacial loading all impacts on spatial variation in stresses in the 
HP area. In such a sense, the depths and lithology of tests will impact given trendline, 
and these variations of tests depth and lithology varies across the various fields and 
influences the trends to some extent from site to site (See DV3.2, DV1.2)  

• The Bayesian modelling approach enables probabilistic quantification of stress 
prediction uncertainty, which is suitable for probabilistic assessment of geomechanics-
related risks (e.g., fault stability, caprock integrity and induced seismicity) 

• The customary complete pooling approach to integrate stress data from multiple sites 
fails to account for the possible between-site heterogeneity in the data, and hence tend 
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to yield overconfident stress predictions, especially for target CO2 storage sites where 
local stress data are limited. 

• The proposed Bayesian hierarchical model is able to borrow appropriate stress across 
nearby sites by explicitly accounting for between-site similarity/heterogeneity, thereby 
leading to more accurate predictions of the minimum horizontal stress profile especially 
for the storage sites of limited data. 

• The Bayesian model has the potential to incorporate other available sources of 
information in the forms of prior distributions to further constrain the stress states at a 
site, e.g., borehole breakouts, drilling-induced fractures, faulting regimes and frictional 
faulting theory. 

• Such established statistical method demonstrated here may be useful in screening 
studies in early phase of CO2 storage site developments and in detailed risking studies 
to better understand the uncertainty range from well proven statistical methods. For 
detailed evaluations of stress, local stress measurements from XLOT in the relevant 
formations in combinations with logs, geology and stress history in combination with 
numerical study will be the more robust method for precise estimates (DV1.2). 

 

5 Further study 

For further study, it's essential to recognize that while this research provides valuable insights, 
its results are site-specific, primarily demonstrating the methodology rather than a 
comprehensive site evaluation. Future work for the probabilistic assessment and associated 
sensitivity analysis should focus on applying this approach to other sites, such as the Gamma 
area in Smeaheia and the Aurora field, to understand regional variations and validate the 
methodology. Moreover, refining the method for determining the range of input data will 
enhance accuracy. Additionally, exploring different applications like caprock integrity 
assessment and reservoir simulation could broaden the scope and impact of this research 
approach. 
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